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This report is Chapter VI of the twelve in a forthcoming research
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VI. 1

Chapter VI

Spherical Diffusion Flames

1. Introduction

Earlier chapters have been concerned with flames for which the reactants are

supplied already mixed. When the reactants are intially separated and diffuse into

each other to form a combustible mixture, the f&me is called a diffusion flame.

A bunsen burner with its air hole closed supports a diffusion flame between the

gas supplied through the tube and the surrounding oxygen-rich atmosphere. Af

candle supports a vapor diffusion flame, so-called because the fuel is produced,

through liquefaction and subsequent evaporation of the wax, by the heat of the flame

itself.

Premixed and diffusion flames share certain features, but the differences

are more striking than the similarities. For example, there is no unlimited plane

flame, as can be seen from Sec. 11.7. The oxidant fraction would be constant

beyond the flame sheet, at which the value would be smaller than upstream. But

a diffusion flame requires the oxidant fraction to be zero upstream, since other-

wise there is premixing, so that a contradiction is reached. A similar argument

applies when the fuel is supplied at a finite point, where now it is the oxidant

flux which must be zero. Moreover, since cylindrical flames are Just geometrically

attenuated versions of plane flames (Ch. VII), there is no cylindrical diffusion

flame either (Ludford 1977).

In order to gain some insight into the nature of diffusion flames we seek

a simple one-dimensional configuration which bears some relation to physical

reality. One possibility is to introduce the oxidant at a finite point of the

plane flame but, curiously enough, details of that have never been worked out.

To be sure, the chambered diffusion flame, in which the fuel supply is also at

a finite point, has recently been considered by Matalon, Ludford and Buckmaster
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(1978). But that is already too complicated for our purposes.

Two choices have been popular in the literature. One is the counterflow

diffusion flame (Fig. 1) in which opposing jets of fuel and oxidant collide,

supporting a locally one-dimensional flame in the neighborhood of the stagnation

point. The configuration has the advantage of being relatively easy to set up

experimentally but suffers analytically from the gross compromises which have to

be made with the fluid mechanics. For that reason, and because of its similarity

with the alternative to be discussed next, we shall not consider the counterflow

diffusion flame.

The second choice is the spherical diffusion flame which, because it occurs

in the burning of fuel drops (Fig. 2),has great technological interest. As for

the candle, it is then a vapor flame, the liquid fuel being vaporized at its

assumed spherical surface by heat conducted back from the surrounding flame where

the vapor burns with the ambient oxidant. Although the size of the drop continually

decreases as fuel is consumed, the quasi-steady approximation (Williams, 1965)

neglects this effect. Such steady burning can be produced experimentally by

forcing the fuel through a porous sphere in a gravity-free environment. Indeed,

by supplying the fuel already as a vapor the whole range of spherical flames

can be examined.

If these phenomena are studied for the express purpose of solving the

practical problem from which they derive, then one has to be concerned with the

validity of the modelling. Thus many studies of the fuel-drop problem have

txamined amongst other things the validity of the quasi-steady approximation,

about which reservations have been expressed. Such practical considerations

are not our concern, since we regard the models simply as mathematical idealizations,

albeit with physical reality continually in mind, whose study can provide some

insight into the nature of diffusion flames. The experimentalist may then feel'
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challenged to devise realflames which model the mathematics, as in the porous-sphere

experiment mentioned above.

We have to deal with the spherically symetric form of the equations (1 .41-44),I in particular

e aT 2- (r v) = 0,
r

r

i i 1 1 a 2aYi(3) P(I ay v - 2 - -(r -)=j ia (i 1,2),
i r

where the radial velocity v is the only component, T = l/p, T= t/O

and (if the radius, a, of the supply sphere is used to define units)

(4) 9 = D YI'lY"2 e-O/T
(4) flD 1 ~2

with D given by the formula (1.47). The equations for the product and inert species,

which have not been written, are complicated by the implicit assumption that I..1
is not necessarily equal to X 2" The momentum equatio, which has also been omitted,

plays no role other than determining the pressure field when there is spherical

symmetry. Throughout this chapter we shall take

(5) ~VI  =  V2  
=  1 so that m 2 = -

(corresponding to a bimolecular reaction) for the sake of simplicity, even though

retaining general values would cover the corresponding analysis in Ch. VII

( l, v2 = 0) showing, in particular, why there are so many similarities.

Finally, unsteady terms have been retained with a view to stability considerations



i~ion the long time T. To avoid subscripts we shall change the notation to

(6) Y Ys , =2 -- , =- J, J -- K,'1I-' -T

All six values Ts , Ys Zs. Ts' Ys', Zs may be assigned at the supply sphere.

In varying the mass flux M from the sphere we shall in fact suppose that

M-T', M-1 y' M-lZ are prescribed, these being fluxes per unit mass of mixture
S S 5

supplied. (The same was true for the plane flame; M was then hidden in the

coordinate.) It is more convenient to suppose that the two fluxes

(7-is Y -- IY, ,K = -s -lz,/-M(7 J ss s

are given. Clearly a pure diffusion flame requires J >0, K s = 0 so that the

sphere is a source of fuel but not of oxidant; for simplicity again, we shall

take.

t8) is 1, Ks  0

making the sphere purely a source of fuel. Likewise the values T ,Z at infinity

will be given, leaving only Ts,M1-T' = L among the six original parameters.

In addition Y may be assigned, and we shall take

(9) Y = 0

to ensure that all the fuel has originated at the supply. There are then seven

bdundary conditions on the sixth-order system, so that we may expect M to be

determined by D.

2. Steady Combustion for 1. Damkjhler Number Asymptotics.

The qualitative nature of the steady solution is not affected by the Lewis

numbers; it is only in the stability question that they play an important role.
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To simplify the discussion, which will be complicated enough, we shall therefore

assume for the present that both Lewis numbers are unity.

In the steady state the continuity equation can be integrated to give

(10) r2 pv = M (const.) or pv = M/r2.

l4a 2M is the rate at which fuel is supplied, but is is only the burning rate

if the total outflow of fuel at infinity is zero. Nevertheless M is loosely called

the burning rate, and we shall adopt the term also.

The Shvab-Zeldovich variables Y. = T-Yi/ci satisfy

(11) 7--[ r -) -2 V yi = 0 for l< r<c

r r

Since all solutions are bounded at infinity, the analysis immediately differs from

that for the plane (premixed) flame. As already anticipated, all sik basic

parameters L, Jo, KO' T., V may be assigned to give, in the case (8)

(12) T+2Y = T + (T a-T.)(1-e-M/r),

(13) T+2Z = (TsL)(l-e-M/r) + (T+ 2z)e
-M/r

where

C14) T a T -L+2

is the adiabatic flame temperature. The problem now reduces to one for T alone,

namely

(15) --(T) = DYZ e-T for 1 <r <

T s, L,T. prescribed.
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Since there are three boundary conditions for this second-order differential

equation, M is determined as a function of D as part of the solution.

Until the advent of activation-energy asymptotics, analytical discussion

was preoccupied with Damk6hler-number asymptotics (i.e. D +0 or -). Knowledge

of these limits is of some importance, so they will be briefly discussed first.

Frozen combustion occurs when the chemical reaction is very weak, i.e.

D )0. The heat conducted back to the supply sphere then comes from the resevoir

at infinity (provided T >T s) and the limit solution is

(16) T = (Ts-L) + LeM(
1 - 1/r)

where

(17) M = Mw = in [1 + (T. - Ts)/n

We shall only be concerned with conductive heat sinks, i.e. L> 0, so that

(18) Ts< T

is required for Y to be positive; then M is also positive, as expected.

The result (16) is not uniformly valid since for large values of r the

neglected reaction term decays more slowly than the transport terms. Defining

2 -e/T=
(19) 2 = %D zae

leads to the expansion

(20) T = T- T- + L - 2(le)+o()

for the coordinate R = er. The temperature gradient far from the supply is

thereby corrected, so that the heat flow from the infinite reservoir can be
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calculated as

(21) lie (4,)2 dT 4M(Ta ) •

Tan 0(l) amount of heat is supplied to the environment, which is usually

the goal of combustion. The frozen limit is not an extinguished state, but rather

one in which all the reaction takes place at essentially constant temperature far

from the supply.

The equilibrium limits are obtained as D -'. They are of great practical

interest since even under standard atmospheric conditions many diffusion flames

do have large Damk'hler numbers. Clearly the limit D- ' is singular, since the

highest derivative in equation (15) is multiplied by a vanishingly small parameter

D - . We may anticipate thin regions where the second derivative is very large

and, when located in the interior of the combustion field, they are called Burke-

Schumann flame sheets (Kassoy & Williams 1968). They should not be confused

with the flame sheets that occur in activation-energy asymptotics. The thin regions

can also be boundary layers but we shall look at the other, more common possibility

first.

Outside the flame sheet the limit equation is simply

(22) YZ = 0,

which represents chemical equilibrium for the irreversible reaction. The

combustion field is divided into regions where either Y or Z vanishes. Since

fuel is supplied at the sphere and oxidant at infinity it is natural to put an

oxidant-free region contiguous with the sphere, separated at r = r* by a flame

sheet from a fuel-free region extending to infinity. The Shvab-Zeldovich relations

(12,13) then imply



VI. 8

(23) Z 0, T (Ts-L)(l-e - M/ r ) + (T + 2Z )e - M/ r  for r < r.,

(24) Y = 0, T = T + (Ta-T,)(l-e- M/r) for r > r.,

and the temperature at the sphere is T. only if

rT -T +2Z1S(25) M = Me 
= Zn 11+ CO s O

IL '

Continuity of temperature at the flame sheet shows that it must be located at

• I(26) r* = M e/ In (I + Zoo),

so that the flame temperature is

(27) T* = T + Z (Ta-T.)(1 + Z).

These equations are the essence of the so-called Burke-Schumann solution,

although it is still necessary to show that there is a structure linking the two

sides of the flame sheet. We shall be content with setting up an apparently

well-posed problem for this structure.

It is clear from the oxidant species equation (3b) that, for D large but

not infinite, there can be no algebraic perturbation of Z = 0 in r < r,. The

temperature is therefore given to all orders by the formula (23) so that, on

writing

(28) M = M + D-1/3 M + o(D 1/3), Mo = M , D* = ;De-6/T.

0~ 1  -1/

(a choice justified by the consistency of the structure problem below), we find

(29) T= T0 + M 1(T-T-L-2Z)eI o(n ).

where T; is the original T in r < r* with M replaced by Mo . Similarly,

there is no algebraic perturbation of Y in r > r, so that the temperature is
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(31) T = + + D-1/3M M(TTe /r + o(D;1 /3

0(-~ a r+OD/)

Within the flame sheet we set

-1./3 -1/3 -1/3
(32) T = T* + D* / t + o(D* r), r* + D*/

to obtain
T -T M I. T -T mot

22 a lr at + a w M~_
(33) +dtd T r+(lz 2Drr

Matching with the expansions outside requires that

T -T M E ,

0ta 2 2 -) + o() as E--o(34) rt =* ol) + a -

T -
(35) dt -T M0 + o(1) as E +.

dE l+Z r2

It is reasonable to expect that, for some unique M, in the initial condition

(34) , integration of the structure equation (33) from g = -- will lead to

the correct slope (35) at = +o . That indeed is found numerically, which is

the only way of carrying out the integration. We may therefore assert that

there is a structure and that its computation gives the perturbation of the

burning rate.

The Burke-Schumann solution does not hold for all parameter values. An

underlying assumption is that a flame sheet forms in the interior of the

combustion field, so that for consistency r* must be greater than 1, i.e.

(36) T0- T5 > (L-2)Z .

Then M 0 is automatically positive, as might be expected. As equality is

approached the flame sheet moves to the surface r = 1 and our analysis breaks

down. Although the resulting surface flame (Buckmaster 1975) does not play as

important a role in practice as the Burke-Schumann flame, a brief description of

it will be given here.
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When the flame sheet is a boundary layer the oxidant-free region is absent

and only the fuel-free region (24) remains. Since the temperature must tend to

T as r -i,

(37) M = Ms = tln[l + (T- Ts)/(L-2)]

a result quite different from the Burke-Schumann value (25) but to which it is eqaui

at the inequality (36). The result (37) is that for weak burning with L replaced

by L-2, where the 2 can be identified as the heat released in the flame.

In addition, the flame-sheet structure is different. The Shvab-Zeldovich I
relation (13) shows that

(T -T,) - (2-L)Z
(38) ZTTa

no longer vanishes. As a consequence the flame sheet now has thickness D;112

and the structure is governed by a linear equation that can easily be integrated.

We find

(39) M = M 1 1 + (DYo.)-/2 L(+Z )1/
s (Ta-T) +o(D 1 / )]

and the structure

T -T

(40) T = T + DlZ + l-e + o(D; ,

=1/2
where now D (r-1).

Restrictions on the parameters comes from Ms  and Z,. The (small)

mass fraction of fuel is positive only for M " 0, so that we must have

<;

(41) T < T according as L 2;

the positivity of Z, imposes the additional restriction
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(42) T.;. Ts (L-2)Z.

Two angular regions are thereby determined in the parameter plane (Fig. 3); one

coincides with the region where the Burke-Schumann solution exists but the weak-

burning solution does not, and the other with the region where the reverse is true.

3. The Nearly Adiabatic Flame for Lei # 1.

Having determined the possible ends of the M,D-response curve, we now turn

to its shape in between. Here activation-energy asymptotics are particularly useful,

though a general discussion is still quite complicated (see Law 1975) requiring

extensive numerical calculations. For the moment we shall restrict attention to

the special case considered by Buckmaster (1975) in which

(43) Ta - T = k/e as 6 - co

where k= O(l). A great deal of qualitative insight into the nature of diffusion

flames can thereby be obtained with a minimum of computations. The most important

aspects. of the general case will be dealt with later, albeit for ea-) still.

It' is convenient to fix everything but T such that its limiting valueS

T + L-2 satisfies

(44) Ts< min(T ,T + (2-L)Z}1

to ensure the existence of both the frozen and Burke-Schumann limits. Restriction

to. small values of Ta-T means that in both limits the combustion field is nearly

adiabatic, and in fact that will be true along the whole of the response curve.

The unsteady formulation is reinstated, with Lewis numbers again arbitrary.

Global Shvab-Zeldovich relations do not exist and it is necessary to re-examine

the complete system (1-B).
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For slow variations, the only information needed from such a system in Sec. ii

was the change in enthalpy T + Y up to the flame sheet. Here the changes in

both T+2Y and T+2Z are needed, but the procedure is the same except for

integrating from the supply (as in Sec. IVS) and taking account of the areal

2
factor r. We find

M(T -T-2Y)=J(Y) r 2aT 2 3Y(45) a--ar ) r

(46) M(Ta-2-T*-2Z*) =2(Z)- r(-T + 32_ -)Z
J ar af. r*

to o(1/e), where

*r2 [p(2Y-T*-2Y*) ]dr

is to be evaluated to g(l) only; stars refer to values Just behind the flame

sheet. _9(Z) will not be evaluated since the corresponding equation is only

needed to Q(l).

So far as leading terms are concerned, we may concentrate on the steady

version of equations (2), (3a)and (3b) where pv is the function (10)with M

now dependent on T . Beyond the flame sheet the temperature must be constant

at T . Suppose, on the contrary,that it increases from the flame to infinity.

Then heat from the infinite resevoir would maintain the flame temperature above

T = T, , which is a contradiction. The combustion field is therefore similar to

that for the plane deflagration wave treated in Ch. II. The temperature increases

from T at the supply to T at the flame, beyond which it stays constant.

The reaction in 1 < r < r, is frozen, while there is equilibrium with

(47) Y - 0 in r < r <.

In fact the latter holds to all orders.

r4
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With this picture in mind the solution in the frozen region is easily derived.

We find

MM1/(-/r 1/M1/.-/r

(48) T = Ts-L+Le +o(1),Y=l-e +o(l) Z=Z*e +o(l)

where

(49) r. = M/(M+kn L/2).

These satisfy the supply conditions and give T = T (to order 1), Y 0 at

r = r.. For consistency r* must be greater than ., i.e.

L <2

is required: the heat conducted back into the supply sphere must be less than

that released in the flame. Similarly

(50) Z = [Z(1-e -Mf/r) + Z.(e -M/r-e P /(1-e M )+o(1),

(51) T = Tw + C(1-e-M/r)/e + o(1/e)

in the equilibrium region, because chemistry-free,

equations are still satisfied. (The constant T does not count as a leading

term.) The unknown constants Z* and C can be found (in terms of M) from

the basic equations (45) and (46) of slow variations, which yield

(52) C -bM2 dM/dT,Z* = (l+Z.)e -1

where

(53) b I (_ /2rC Le ~ U.~JTd
I %-L + Le (.-M)

11 r s
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The chemical reaction determines the burning rate at a given temperature,

so that we may look to the structure of the flame sheet for another relation

• Ibetween M and the perturbation of the flame temperature, represented by C.I
Writing as usual

r = r + / , T = T..+ t/6 + o(/e),

(54)
Y = y/6 + o(1/0),Z= Z, + z/O + 0(1/8),

leads to the equations

2 2f -;-qtT2 t

(55) -3t/a = (21F)= Dy et/T ,

where

(56)-el

(56) D = DZ*6 2 e

while matching on either side of the flame gives the boundary conditions

(57) t = 2Mg/r 2 +0(1),9 y = -tMgIr2 + 0 (1) as -

-M/r

(58) t = C(l-e ) + o(1), y = o(1) as - +

It follows that there is a local Shvab-Zeldovich relation

(e-M /r*)

(59) t + 2y/ = C (-e

which enables the equation for t to be integrated to give
-M/r* 21 /

(60) C(l-e ) =T2n( 2 e e /D Z*rT.

Elimination of C between this and the result(52a) yields an equation for

M, namely
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-M/r. -1 2 2 2 e/T 4r 4
(61) bM2dM/dr= k-(l-e ) T 2n(2M 0 e 7DtZr*T.)

where Z* and r* are given by equations (52b) and (49).

We shall first describe the steady state, determined by setting the right-

hand side of this last equation equal to zero, and then discuss its stability.

Different values of k lead to different steady-state responses, i.e. curves

of M versus D with all other parameters fixed (Fig. 4), though all join the

froien limit (17) to the Burke-Schumann limit (25). In between, a curve is

monotonic or S-shaped depending on the value of k. When there is a gain of heat

from infinity (k <0) or when the loss is sufficiently small, the response is t

monotonic. But for sufficiently large loss the burning rate is triple-valued over

some range of Damkohler number. Conditions under which heat is provided to the

environment are particularly important, so that the S-shaped response is of

special interest.

Explicit formulas can be given for the turning points on the S when k is

large. At the lower point
2~ ~ I 4 4 2 e/T2J o4

(62) M-tn(2/L) + 4TO/k, D -2(4/e) T0 e 7(in2L)2 7.k,

while at the upper point

M

(63) M - Me - T.Le e/2k,

D -e(Me+tn L/2) e ee k exp {-k 1-(l+Z)" ]/To 2} IL eTe

where

t (64) M = 1n(l + Z) + £n(2/L)

is the Burke-Schumann value (25) corrected forM# 1.
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Conclusions about the instability of the steady state can easily be drawn

from the full equation (61), which holds in the strip Ms < M < Me where Z, > 0

and 1 < r* < -. The right-hand side is positive to the right of the steady-state

0* response curve and negative to the left (Fig. 5), while b Z 0 according as

1. Consider first t <1. If the burning state lies off the steady-state
* 4-J

curve, then M will change in the direction of the arrows in Fig.Aso that the middle

branch of the S is unstable. Now supposet>l; the arrows must be reversed so

that then the upper and lower branches of the S, and the whole of the

monotonic curve, are seen to be unstable.
t

Nothing may be concluded about stability however, since only a special class

of disturbances is being considered. Indeed, it is generally believed that the

middle branch of the S, which is stable to the present disturbances, is in

fact unstable. Whether that is true or not, certainly the top and bottom branches

are more important than the middle branch because for sufficiently large and

small values of D they represent the only possible steady states. The

instability predicted fort >1 is therefore the most interesting result, and it

is analogous to the instability of the premixed plane flame (Ch. II) to one-

dimensional disturbances when the Lewis number is greater than one. Plane flames

are also unstable when the Lewis number is less than one if three-dimensional

disturbances whose wavelengths are large compared to the flame thickness are

permitted (Ch. V), but this result clearly has no analog for a spherical flame.

If it is assumed that the stability results deduced here for t <1 are

generally true, i.e. when all possible disturbances are accounted for, the

( middle branch is unstable and the other two are stable, then the turning points

of the S are ignition and extinction points. The asymptotic results (62) and

(63) then give ignition and extinction conditions, respectively. In any event,

there is no reason to doubt their validity for 1.
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4. General Ignition and Extinction Analyses withy =v) = .

We proceed now to the general steady state, i.e. arbitrary values of Ta - T

with emphasis on the top and bottom branches of S-responses. As in Sec. 2 the

qualitative nature of the solution is not affected by the Lewis numbers so that,

since the analysis is complicated enough ford 1, we shall restrict

attention to these values; there is anyway a lack of stability forJ(> 1 and some

question of it for4< 1, at least for T% close to Ta (Sec. 3).

We have to deal with the Shvab-Zeldovich relations (12) (13) and the temperature

equation (15). The requirement (44) is still imposed, for the same reason. The

additional requirement

(65) T.< Ta

ensures an S-response, as is suggested by Sec. 3 where such a response was only

obtained for sufficiently large k = e(Ta-T. )> 0. [When T is less than Ta9

the second part of the original requirement (44) is actually implied by the first.]

The lower branch will be considered first, the main goal being to locate

the ignition point, which is a fundamental characteristic of the burning response.

Sec. 3 suggests that the burning will take place far from the supply on the whole

lower branch, i.e. with M close to its frozen value: the ignition point (62)

has this property, albeit the measure of closeness is 1/k rather than the 1/0

we must expect now.

At any finite value of r the combustion field is frozen to all orders, so

we may write
i M (1-lr) e1 MiL( l-(1-rlr

(66) T = Ts-L + Le w + l-l/r)e + o(e-1

where

(67) M =M +e-lM1 + o(e-1).
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T and T' take the correct values at r = 1 but the condition T )T as

r - is violated, showing that a new coordinate is required there. It turns out

to be

(68) R = r/e

and then the expansion

(69) T =f TC + 0-It(R) + o0 1

leads to the structure equation

id R2 dt =(T a-T)Mw t/T2eT1
(70) _ 2,-( -) =D w [ t R e ,D w  DZ e- e e/T/

R2d R R w

subject to the boundary conditions

M

(71) t = Le w(Ml-Mw/R) + o(i) as R +0, t = o(l) as R

the first of which comes from matching with the frozen expansion. With all

parameters specified, including Dw the perturbation t can be found (numerically)

without using the Ml-term. In that way M, can be determined as a function of

the Damkthler number.

By suitably scaling D w  and M 1  the relation between them can be made to

depend on a single paramter

M
(72) B = (Ta-T )/Le w.

The scaling is

M

(73) = 2 Dw N f i I/M where a = MULe W/T 2 ,

and then the new variables

(74) u = pt/T 2 , p = R/O

lead to the canonical problem
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(75) du/d - Vu-=)e

(76) u = Nwp-1 + o(I) as p+O, u o(l) as p

It is found, albeit numerically, that the graphs of Nw  versus A w  display the

ignition phenomenon if and only if B is positive. Curves for various values of

1B are shown in Fig. 6; note that they are independent of Z.

The burning rate at the extinction point (63) of the nearly adiabatic

flame lies close to the Burke-Schumann value when k is large. This suggests

that the general extinction curve can also be uncovered by an analysis which

considers O( o- ) perturbations of the burning rate, now from its Burke-

Schumann value.

The flame sheet has the location (26) while on both sides of it the reaction

is frozen to all orders. Thus

T" SLLe (1- 1/r l l/r) eMe (l-l/r) -(7) T-! Ts-L+Le e + rlM(-/)ee + o(O-_) for r < r,,

(77) T
{T+ TT-T~-M /r

T a+(T_Ta)e  +o(i) for r >r*,

where

(78) M = Me + -1M1 + o( -l)'

Only M, is unknown and for that we must turn to the structure of the flame

sheet. With

(79) r = r. + F/a

the expansion

(80) T = T. +6-1t() + o(-1),

where T* is the flame temperature (27), leads to the structure equation
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2t 2d T T M -T M M t/T 2
-Mi')r, t + eaT a 2) 1 ]- e(81) d 2 = -D t+( ) 2 r i t +Z 2)(-- ) e , =

subject to the boundary conditions

t = (2- T a+ T M) +o(1) as g-- -,- Z 2 -,:, r

(82)
dt T-T M

') +o~l)as g++,

which comes from matching. This should be compared with the problem (313), (34)

and (35;, the only difference being that here the Arrhenius factor is not approximated
t

by a constant since the perturbations are as large as 0(0-1

Again the problem determines M1  and, by suitable scaling, the relation between

it and De can be made to depend on the single parameter

(83) y = 1 - (Ta -T)/(l+Z ) = 1-$

Then

(84) Ae = r.eT e,/M2 Ne = (1+y)M1/T2

and

(85) u tT2 = p (M 2/r* 2Mr)T

leads to the canonical problem

(86) d2u/dp2 = - A(u 2 -p2 )exp(u +yp),

(87) U = P+ Ne + o(i) as p+- , du/dp =- + o(l) as p + .

It is found (though again numerically) that the graphs of Ne versus Ae display

the extinction phenomenon if and only if y is less than 1, i.e. O= 1 -Y is

positive. Curves for various values of Y are shown in Fig. 7. Note that the

actual Damk6hler number for extinction is 0(3e e /T* ) as compared to

0(0e w) for ignition, so that (since T, > 'T) the extinction point lies to

the left of the ignition point, as it should.
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5. Remarks on the Middle Branch.

It is widely believed that the middle branch, where M is a decreasing

function of D, is not of practical interest because the burning states there are

unstable. However, there is no hard theoretical evidence for this other than the

slow-time instability for < 1 described in Sec. 3. Certainly the notion that

for a laboratory flame an increase in pressure could cause a decrease in burning

rate is intuitively difficult to accept but, be that as it may, there are at

least two good reasons for studying the middle branch. Any definitive answer

to the stability question can surely come only after the nature of the steady tate

has been determined; and anyway that nature is sufficiently different from what

we have encountered before that some account of it should be given. Nevertheless,

only a broad sketch will be presented.

It is clear from the ignition and extinction analyses that the flame

temperature on the middle branch must span the range T" to T + Z (T a-T)/(l+Z c

and, since it is the maximum temperature at both ends, we may expect it to be so

1i between. On either side of the flame sheet the reaction is frozen, just as in

the extinction analysis. The key difference is that here Y. and Z* do not

both vanish; we shall first suppose that neither does.

It is more convenient now to specify M and determine

(88) D = DO[l + 0(e-)]

as part of the solution. The expansions (77) are therefore replaced by

- = Ts-L+LeM(I-I/r) + o(i) for r < r,

({T +jLeM(l-e- ) +o(l) for r > r.,
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if we anticipate a property of the flame structure, namely that the heat generated

by the reaction is conducted equally to the two sides. Continuity of temperature

to leading order at the flame sheet now determines

M -M
(90) r= MI n 2/(l+e w

and

(91) T= (Ts+T -L+Le )12,

which covers its range as M increases from M. to Me

The sturcture is investigated, in the usual way, by means of the transformation

(79) and the expansion (80 ) and we find t

___ t/T 2- *T
(92) d2t -D e D = D 0 -1e-e/Td2 m m YZ~

where Y, and Z. are determined by the Shvab-Zeldovich relations (12)and (13).

Integration yields

t/T
2

(93) dj 2= C - 2OmT2e

here C is a constant; from which it follows that the temperature gradients on

the two sides of the flame sheet are of equal magnitude but of opposite sign, as

anticipated earlier. [Matching shows that C = (LeMM/r2)exp(-M/r*), but we

shall not need this result.]

Another integration gives only a relation between the maximum value of t

and its location; to determine D it is necessary to take the expansion (80)m

to one more term. No useful purpose is served by presenting these rather

complicated algebraic details. They are described by Lindn (1974) for the

counterflow flame and Law (1975) has adapted Linan's analysis to the present

problem. Another reason for not pursuing the determination of Dm is that
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(94) 'nDo O/T, + ne + Rn(D /YZ,)
m

is only affected to 0(i) by it, T, being a known function (91) of M.

Indeed the expected property

dDo/dM < 0 as -

followsPirrespective of the value of Dm , since

(95) dT*/dM > 0.

The solution derived here is valid only so long as 0 < Y,,Z, < 1 and

r, > 1. These inequalities are satisfied automatically with the exception of

Y F> 0, which requires

(96) M < Xn(Ta-T.)/L.

Since M must be greater than the condition for there to be a range of validity

is

(97) <T Ta - i;

the range will extend up to Me if

(98) To < T a-(I+Z).

These possibilities are shown in Fig. 3.

When this last condition is not satisfied, a question arises of completing

the range M w < M < M . The clue is the vanishing of Y* at the end of the range:

for the remaining values of M (and all of them when Ta-T < 1) the mass fraction

of fuel is 0(61) at the flame sheet. This leads to a similar analysis, albeit

with a.different flame structure (cf. Sec. 6), which completes the middle branch.

On it Z* decreases from Z at one end to zero at the other so as to join the
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ignition and extinction branches. In that connection it should be noted that

the middle branch does not Join directly to the extinction branch when the original

solution completes it. Although Z, vanishes at Me , Y, does not; so that

a transition flame, for which Y* decreases to zero, is needed. All these

details are described by Li-an (1974) for the counterflow problem.

6. The Monotonic and Other Responses.

The last two sectionshave been concerned with the S-shaped response which

occurs when the combustion field supplies heat to the ambient atmosphere. When

t
(9) T >T

a

the flux is in the opposite direction and we may expect the response to be

monotonic (if only on the basis of Sec. 3). Fuel drops, to which the theory will

be adapted in Sec. 8, are usually burnt to provide heat to their surroundings

so that from the point of view of that precise application the present discussion

is not important.

The temperature increases again beyond the flame sheet to give an equilibrium

region, where

(100) Y = 0 for r > r,

must hold to all orders. It follows that the expression (89a) is still correct,

but that the expansion (89b) must be replaced by the asymptotically exact result

(101) T = T To + (Ta-To)( l-e ) for r > r*.

Continuity at the flame sheet then determines

r. = M/tn [(Ta-T+ Le )2 ]

(102)

T* = T a + 2(T,,-Ta)/(LeM-Tc,+Ta).
a -a
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The monotonicity of the response is now clear without going into details of the

structure, by extracting just

(103) In Do = O1T* + 2 InO t O(l)

in analogy with the expansion (36). Since

(104) dT*/dM < 0

under the condition (99), the leading term D in the Damkaler number is an

increasing function as required.

As M increases from its frozen value, r, decreases from w and there rare

two possibilities. If the inequality (36) is satisfied (see Fig. 3), r* reaches

the value (26) as M tends to Me; the combustion field is then identical to

the Burke-Schumann, in particular the oxidant no longer penetrates through the

flame. Our solution joins the frozen limit to the Burke-Schumann limit, correct

descriptions of the approaches to which follow the same lines as Sec. 4.

The second possibility arises when

(105) 0 < T- Ts < (L-2)Z

(see Fig. 3). Then Ms  is smaller than Me and as M reaches it the flame

settles down on the surface of the supply sphere. Our solution now joins the

frozen limit to Buckmaster's limit, though we shall not describe the approaches here.

The discussion so far in this section can be justified by the fuel drop, albeit

under conditions of little practical interest. The same is true for

(106) T < Ts,

though the inequality can 'no longer hold over the whole response of the drop (see

the next section). For this reason, no analysis for the lower half of Fig. 3 has

been published although it is not difficult to see how it would go.

- • •-
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While there is no frozen limit now, it turns out that both equilibrium

limits exist, provided

(107) T > (L-2)Zo.

Otherwise, no limits exist and we must conclude that there is no solution. Indeed,

application of the Shvab-Zeldovich relations (12) and (13) at r = 1 shows that

the fuel and oxidant fractions there would be negative for L > 2 and for

T.-T% < -2(l+Z. ), respectively, even for finite 0 , which leaves only a small

triangle of doubt.
t

It is reasonable to suppose that, when the conditions (106) and (107) are satisfied,

-be response takes the form of a C Joining Buckmaster's limit to the Burke-Schumann

limit (which is always higher). Indeed, the analysis sketched in Sec. 5 will

still apply; only the conditions under which the basic solution must be modified

will change: r, > I is no longer automatic and the basic solution applies over

at least part of the range M s < M < Me only when L < 1.

The leftmost point of the C-shaped curve represents both ignition and

extinction conditions. Since the response determined by Sec. 5 has negative slope,

the burning rate there will again lie within 0(1/0) of the Burke-Schumann

value Me . Hence the extinction analysis of Sec. 4 locates these conditions.

7. The Burning Fuel Drop.

In our discussion of the spherical diffusion flame we have supposed the seven

parameters

TsL,JsKT ,YMZ

to be given; indeed, we have taken

J a 1, Ks = O, YO 0



VI .27

for simplicity. If L is the latent heat of the vaporization of the fuel (taken

to be constant for the temperature range of interest), then these are in fact

prescribed in fuel-drop burning with the exception of T s , in place of which the

Clausius-Clapeyron relation

(108) Ys = (Ts/T. a exp e(l/Tb-l/Ts)

is substituted. Here Tb is the boiling temperature corresponding to pc i.e.,

in the notation of equation (111.16),

(109) Tb exp(-O/Tb) -Pc/k.

Now Y may be calculated in terms of the existing parameters and M by means

of the Shvab-Zeldovich relation (12), so that it may be eliminated to give

(110) 2(Ts/Tb ) 8expe(i/Tb-l/Ts) z 2-L+(T -Ts+L-2)e
M

as the equation determining Ts . The new feature therefore is that T. is no

bnger fixed but must be calculated at each point of the response curve. Once

Ts is found, the parameter plane of Fig. 3 may be used to find the appropriate

structure for determining D.

The properties of the resulting responses are not obvious and it helps

to characterize the loci in the parameter plane. First note that there is always

a weak burning limit, whatever the values of L,T.,Z.,6 and Tb. That is, the

equation (110) invariably has a solution Ts = Tw (say) when M is set equal toIw; in fact, T < T as we should expect in the absence of weak burning

for Ts > To . Next note that there is always a Burke-Schumann limit

T= Te (say)when

(111) > (L-2)z;

....
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that Te T. +(2-L)Z., corresponding to a point above the quilibria divider;

and that Te < T. according as the point is above or below the adiabatic line.

These results follow on setting M = Me in equation (110). Finally note that,

when M = Ms , the equation has the solution T. = 0. While this is not relevant

when the inequality (44) holds, it provides a termination point when

(112) T <(L-2)Z.

The possible loci are illustrated in Fig. 8, where dashes indicate that the

corresponding lines may or may not be crossed (depending on Tb and e). The t

arrows show the direction of increasing M and follow from the property

(113) dTs/dM Z 0 according as T s Z T + L-2

of equation (110). [The condition T < Tb , i.e. Ys < 1, is always satisfied.]

Our knowledge of the response curves for fixed points in the paramter plane now

suggests that the location of the point w determines whether the fuel-drop

response is S-shaped or monotonic. Proof lies in the inequalities (95)& (104),

which continue to hold when Ts varies with M according to the equation (110).

In short, qualitative results for fuel-drop burning can be deduced from the

analysis of general spherical flames given in previous sections. However,

quantitative results such as the graphs in Figs. 6 & 7 cannot be carried over:

the variations of Ts, while they are only o(l/e) on the upper and lower branches,

will modify the ignition and extinction values (Ludford & Normandia 1978).

These remarks apply to steady burning; the unsteady analysis of Sec. 3 is

not directly applicable since no account is taken of conditions in the interior

of the drop. Some of the heat flux at the surface now accounts for changes in the

interior temperature, so that there is a connection between it and the surface

- 0 . . . . . ... . .. . . - ' •. . . .. - . . . . , .. . . . . . : i . . .
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temperature. As a consequence, L is the sum of the latent heat of vaporization

and a complicated integral term depending on T5. Such difficulties do not arise

for the counterflow flame, but there the serious compromises with the fluid

mechanics which are necessary cast doubt on the results.
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3. Paramter plane.

4. Near-adiabatic response curves.
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